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PME Journal Spring 2009 Problem 1196

The Pi Mu Epsilon Journal Problem Section for Spring 2009

Problem 1196:

Let Q∗ = { ab | a, b ∈ Z, a 6= 0, b > 0, and gcd(a, b) = 1}. In
other words, Q∗ is the set of all nonzero rational numbers
written in lowest terms. Find, with proof, the value of∑

a
b
∈Q∗

1

(ab)2
.
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Definitions and Theorems I

Riemann zeta function

ζ(s) =
∞∑
n=1

n−s

Multiplicative function

An arithmetic function, f (n), is multiplicative if, given
a, b ∈ Z+ and gcd(a, b) = 1, f (a)f (b) = f (ab).
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Definitions and Theorems II

Euler product

If f (n) is a real or complex-valued multiplicative function such
that

∑∞
n=1 |f (n)| <∞, then

∞∑
n=1

f (n) =
∏
p

(
1 + f (p) + f

(
p2
)
+ f

(
p3
)
+ · · ·

)
.

Euler’s identity

∞∑
n=1

n−s =
∏
p

(
1− p−s

)−1
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Redefining the Problem I

So ∑
a
b
∈Q∗

1

(ab)2
.

Removing the negative values of a yields Q+ = { ab | a, b ∈ Z+ and
gcd(a, b) = 1}. Then∑

a
b
∈Q∗

1

(ab)2
= 2

∑
a
b
∈Q+

1

(ab)2
.
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Redefining the Problem II

2
∑
a
b
∈Q+

1

(ab)2

Let

ab = n =

ω(n)∏
i=1

pαi
i

n = 60 = 22 · 31 · 51

a = 1 ,b = 60 a = 3 ,b = 20 a = 4 ,b = 15 a = 5 ,b = 12
a = 60,b = 1 a = 20,b = 3 a = 15,b = 4 a = 12,b = 5(

3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 23 = 8
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Redefining the Problem III

ab = n =

ω(n)∏
i=1

pαi
i

So by the multiplication principle: 2ω(n) Then

2
∑
a
b
∈Q+

1

(ab)2
= 2

∞∑
n=1

2ω(n)

n2
.
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Show f (n) is multiplicative

Let

f (n) =
2ω(n)

ns
.

Suppose there exists k , ` ∈ Z+ such that gcd (k , `) = 1. Then,

f (k) f (`) =
2ω(k)

ks
2ω(`)

`s
=

2ω(k)+ω(`)

ks`s
=

2ω(k`)

(k`)s
= f (k`)

So f (n) is multiplicative.
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Show
∑

f (n) converges absolutely I

Now let r = ω(n),

∏
pαi
i = n > 4r−2.

So

n > 4r−2

log2n > log2

(
22(r−2)

)
= 2 (r − 2)

r <
1

2
log2n + 2.
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Show
∑

f (n) converges absolutely II

Then

2ω(n) = 2r <
(
2log2n

) 1
2
22

= 4
√
n,

and
∞∑
n=1

f (n) =
∞∑
n=1

2ω(n)

ns
<
∞∑
n=1

4
√
n

ns
=
∞∑
n=1

4

ns−
1
2

.
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A few manipulations I

∞∑
n=1

f (n) =
∏
p

(
1 + f (p) + f

(
p2
)
+ f

(
p3
)
+ · · ·

)

∞∑
n=1

2ω(n)

ns
=
∏
p

(
1 +

2ω(p)

ps
+

2ω(p
2)

p2s
+

2ω(p
3)

p3s
+ · · ·

)

=
∏
p

(
1 +

2

ps
+

2

p2s
+

2

p3s
+ · · ·

)
=
∏
p

(
1 +

2

ps

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

))
=
∏
p

(
1 +

2

ps

(
1

1− p−s

))
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A few manipulations II

=
∏
p

(
1 +

2

ps

(
1

1− p−s

))

=
∏
p

(
1 +

2

ps
(
1− p−s

)−1)
=
∏
p

(
1− p−s

)−1 ((
1− p−s

)
+

2

ps

)
=
∏
p

(
1− p−s

)−1 (
1 + p−s

)
=
∏
p

(
1− p−s

)−1∏
p

(
1 + p−s

)
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Back to the problem

∞∑
n=1

f (n) =
∞∑
n=1

2ω(n)

ns
=
ζ2 (s)

ζ (2s)

2
∞∑
n=1

2ω(n)

n2
= 2

ζ2 (2)

ζ (4)
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A solution at last

ζ(2) =
∞∑
n=1

1

n2
=
π2

6

ζ(4) =
∞∑
n=1

1

n4
=
π4

90

2
ζ2 (2)

ζ (4)
= 2

(
π2

6

)2(
π4

90

) = 2

(
π4

36

)(
90

π4

)
= 5
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1

(ab)2
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∑
a
b
∈Q+

1
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= 2

∞∑
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n2
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ζ2 (2)

ζ (4)
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Appendix

Formula for calculating even values of ζ(s)

ζ (2k) =
(−1)k+1 (2π)2k B2k

2 (2k)!

Generating function for the Bernoulli numbers

z

ez − 1
=
∞∑
j=0

Bj
z j

j!
(|z | < 2π)

B2 =
1

6
and B4 = −

1

30

ζ(2) =
(−1)1+1 (2π)2(1) B2(1)

2 (2(1))!
=
π2

6

ζ(4) =
(−1)2+1 (2π)2(2) B2(2)

2 (2(2))!
=
π4

90
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